Box 14

Gauss’s Geometrical
Approach to Algebra

As Gauss devastatingly exposes in his
1799 doctoral dissertation, the approach
to agebra as being ontologicaly arith-
metic fails to explain itself: Algebra
fails, internally, to prove what became
known as the fundamental theorem of
agebral

To clarify, consider Gauss's descrip-
tion of d’ Alembert:

“It is proper to observe, that
d’ Alembert applied geometric considera
tions in the exposition of his proof and
looked upon X as the abscissa, and x as
the ordinate of a curve (according to the
custom of all mathematicians of the first
part of this century to whom the notion of
functions was less familiar). But al his
reasoning, if one considers only what is

essential, rests not on geometric but on
purely andytic principles, and an imagi-
nary curve and imaginary ordinates are
rather hard concepts and may offend a
reader of our time. Therefore | have rather
given here a purely analytic form of rep-
resentation. This footnote | have added
so that someone who compares
d’ Alembert’s proof with this concise
exposition may not mistrust that anything
essential has been atered.”

Compare this with Gauss's presenta-
tion of the ontologically geometric com-
plex domain.

Gauss begins the portion of his disser-
tation concerning his own demonstration
with two introductory lemmas, where he
introduces two equations:

(1) r™cosmyp +Ar ™D cos(m—1) + Br M2 cos(m—2)p

+.

..+ Krr co2¢ +Lr cosp+M = 0,

(2 rm™sinme +Ar ™D sin(m—1)¢ +Br M2 sin(m—2)¢
+...+Krrsin2¢+Lr sing+M = Q,

He then begins his proof proper:

“The outstanding theorem is frequent-
ly proved with the help of imaginary
numbers, cf. Euler Introd. In Anal. Inf. T.I.
p 110; | consider it worth the trouble to
show how it can easily be dlicited without
their help. It is quite manifest that for the
proof of our theorem nothing more is
required than to show: When any function
X of the form x™ Ax(M-D+ Bx(Mm-2+
etc. + Lx + Misgiven, thenr and ¢ can
be determined in such a way that the
equations (1) and (2) hold.”

Not only does he claim that he will not
use imaginary humbers, but he seems not
even to use algebral These equations (1)
and (2) do not involve x in any way, but
only r and ¢.

To understand Gauss's use of these
two equations (1) and (2), let's re-
approach our earlier paradox, introduced
in Box 13 (Figure 1):

We havelines, squares with one mean,
and cubes with two means. What form
could correspond to a greater number of
means, or an indeterminate number of

means? What Jakob Bernoulli reported as
his spira mirabilis (miraculous spiral)
providesus alead (Figure 2).

Such a spiral combines two forms of
action, known as arithmetic (simple,
repeated addition) and geometric (smple,
repeated multiplication). The amount of
arithmetic angular change and geometric
incresse of distance are combined as one
action: Thus, doubling the rotation
squares the multiplied length, tripling
cubes it, and quadrupling gives us a geo-
metric understanding of x4, x5, x8, and so
on, as high asyou like.

The unbridgeable gap between linear,
square, and cubic action, and the mystery
of higher forms of action, have been
solved by introducing a single curve,
which, by multiplying the amount of rota-
tion, can create dl of these relationships.
Thus the equiangular spiral brings what
seemed infinite, to the finite, and encom-
passes a before-then disparate class under
one idea of action, which action Leibniz
caled logarithmic.

Now, there are many spirasthat could
be drawn, spiralswhich grow moreor less
quickly. Let us interest ourselves in the
extremes: a straight line (pure extension,
without rotation) and a circle (pure rota
tion, without extension) (Figure 3):

Inspect the circle (Figure 4): What
form of number does it require? Call one
location 1, and, naturaly, its opposite
-1

Notethat our earlier spiral relationship
still holds: The 180° rotation to get to —1,
when doubled to 360°, putsusat 1, which
is (—1)2. But what of the other locations
on the circle? To what humbers do they
correspond? They cannot al be 1, for they
are different places (Figure 5).

Maintaining our principle, (?)? would
be —1 by the logarithmic property dou-
bling rotation on our spira. This makes
(? = V-1, and its opposite, —vV—1
(Figure 6).

The “imaginary” numbers, athough
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not existing on the number line, do exigt,
lying outside the blinders of formalists.
Extending these actions, we create the
complex domain.

“Suppose, however, the objects are of
such a nature that they cannot be ordered
in asingle series, even if unboundedly in
both directions, but can be ordered only in
a series of series or, in other words, form
amanifold of two dimensions, if therela
tion of one series to another or the transi-
tion from one seriesto another occursin a
similar manner, as we earlier described
for the transition from a member of one
series to another member of the same
series, then in order to measure the transi-
tion from one member of the system to
another, we shal requirein addition to the
dready introduced units +1 and —1 two
additional, opposite units +i and —i.
Clearly we must aso postulate that the
unit i [V—1 —ed.] aways sgnifies the
trangition from a given member to a
determined member of the immediately
adjacent series. In thismanner the system
will be doubly ordered into a series of
series”3

Now, how can we represent change in
this complex domain? With “normal”
numbers, squaring can be represented
thus (Figure 7):

Each of these right angles combined

Box 14 continues on next page
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Bernoulli’s logarithmic, self-smilar
spiral.2 The 90° rotation of going from 1
to 2, repeated four times to 360°, gives a
length of 16, which is 2%

FIGURE 7

Image courtesy of Mike Vander Nat
Lines drawn from A to the horizontal axis
make right-angle turns to intersect the
vertical axis. The combination of the
points on the two axes forms a parabola.
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with the axis can be thought of as making
two similar triangles, making the ratio
AIX = XIY (Figure 8). We then get AY/X
= XY/Y,and AY/X = X, whichgivesAY =
X2. So,when A = 1,Y = X?(Figure9).

Each horizontal motion is “wedded” to
averticd change of squared relationship to
the horizontal. Their union, the parabola,
expresses the process of squaring.

But what if we take the entire complex
fidd? This is a two-dimensiond space,
and each result of squaring is two-dimen-
siona as well. Together, that makes four
dimensions! No wonder d Alembert,
“rests not on geometric but on purely ana-
Iytic principles”

Gauss resolved this with the logarith-
mic spird. If each rotationa doubling
squares length, we could express any loca-
tion (a+bv—1) as r (cosp+V—1 sng)
(Figure 10).
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Combining a number of these triangles creates the parabola

And, sguaring it spirally, we get
r2 (cos2¢ +v—19n2¢).

Do you recognize anything from
Gauss's 1799 paper? Gauss simply
applies this transformation to his entire
agebraic equation X = xM+ Ax(MD +
Bx(M2 + etc. + Lx+ M = 0, creating for
each x, r(cose +V—1 dng) instead, and
producing:

(1) r™cosme +Ar ™D cog(m—1)¢ + Br ™2 cog(m—2)¢

+.

and

..+Krr cos2¢ +Lr cosp+M = 0,

2 rm™sinme+Ar ™D sin(m—1)¢ + Br ™2 sin(m—2)¢
+...+Krrsin2¢+Lr sing+M = 0.

This keeps separate the parts with and
without V— 1, geometrically constructing
two surfaces, where d'Alembert only
falsely ruminated on one, non-existent
curve (Figure 11).

From these beginnings, Gauss is able,
in his 1799 paper, to smply and elegantly

use the ontologicaly transcendentd geo-
metric nature of number to demonstrate a
characterigtic (the fundamental theorem)
of its shadow, agebra. How foolish are
those who seek to explain the universe by
imagining that its shadows are redlity!
—Jason Ross

Notes

1. How much time, effort, and money is
annually wasted by students attempting to
explain “financial economics’ from monetary
theory? Perhapsthey could put their time to good
use by providing a thorough accounting of such
waste, per annum.

2. Bruce Director, “Gauss's Declaration of
Independence” and “ Bringing the Invisibleto the
Surface,” Fidelio, Fall 2002.

3. Cal Gauss, “The Metaphysics of
Complex Numbers,” trandated from Gauss's
Werke, Vol. 2, pp. 171-178, by Jonathan
Tennenbaum in 21st Century Science &
Technology, Spring 1990.

See http://www.wlym.com and
http://mww.wlym.com/~jross/gauss for Gauss's
referenced paper and work by the LYM on
Gauss's 1799 paper.
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A geometric construction corresponding to Gauss's Fundamental Theorem of Algebra (right),
created by the LYM in Philadelphia.




