Box 2
Constructing Volumes

Construct!

Members of the Seattle LYM
work on the problem of
congtructing various volumes.
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Here LYM members contemplate the Here, we see human activity wasted on the

magnificent construction of the Grand “virtual economy,” known as the stock
Coulee Dam. exchange.

isconstruction. Congtruction teststhe via-
bility of those ideas the mind thinks best
conceived: Are they redly of legitimate
parentage, or did an adulterer dip in when
your guard was down, and adulterate the
whole affair?

You may think: “Ah, | know this! This
issimple. ...” But when you try to pull
your idea from your mind into the visible
world . . . well, it was not nearly so sm-
ple as you thought! The mind rushes,
unencumbered by the materia world,
capable of conceiving of perfectly consis-
tent systems, glorious designs, elaborate .
.. machinations.. . . which havelittlerela-
tion to redity. The body, meanwhile,
weighed by its own flesh, mucks in the
mud, capable of pursuing little but the
sensua pleasure of a pig. Where is their
connection?

Construction is the mean between
mind and body; it is the means of mak-
ing music through a harmony of these
two diametrically opposed elements. It
is the only means of investigating reali-
ty. If you take up the challenge laid out
here by Lyndon LaRouche, if you get
your hands dirty in pursuit of its solu-
tion, you were likely to produce an idea
directly related to the idea which deter-
mines what | am now writing, as |
attempt to convey thefruits of our strug-
gle with LaRouche's challenge. You
were likely to laugh, as we did—and as
I suspect LaRouche did—when he
wrote out the problem as he did. In just
a few words, he presents an inquiry
which takes many hours, and redly,
many people, to adequately investigate.
And if that were not enough, thereis an
element of the seemingly impossible
which we were immediately aware was
embedded there.

First, LaRouche asks us to think of




the volume of water acube could contain
“as compared with the relevant sphere or
torus of the same capacity.” If he means
what he says, he asks us for a “cubature
of the sphere”: He asks us to produce a
cubical volume equal to the volume of
the sphere. This is certainly no less a
problem than the quadrature of the cir-
cle, and actually, a good deal more of a
problem.

The quadrature of the circle is the
process of making ever-closer approx-
imations of the length of the perimeter
of the circle by drawing circumscrib-
ing and inscribing polygons of an
ever-increasing number of sides, as
Archimedesdid. The processisintended
to result in the creation of a square
whose area is exactly equal in length to
the area of the circle. Archimedes
applied to the circle amethod associated
with Eudoxos, a friend of Plato, called
“exhaustion.” The method of exhaustion
had worked well to produce precise
resultsfor other problems, like the quad-
rature of the parabola, and it was likely
used with similar effect on some of the
volumetric problems we encounter
below.

FIGURE 2

The side of the cube is equal to the radius
and height of both the cone and cylinder,
and to the radius of the sphere. (\e
apologize for the glaring absence of the
torus)
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These Platonic Solids, drawn by Leonardo da Minci, are the only regular solids possible to
congtruct within a sphere. They point to one crucial difference between surfaces and
volumes. (Try bisecting the sides of the octahedron, to make a solid with 16 faces, the way
you would bisect the sides of the octagon to make a polygon with 16 sides, to fully
understand what | mean.) Also note that because of its “ regularity,” its equal-sidedness,
the cubeis*“ spherical.” (We will see more on thisin a moment.)

But Nicholas of Cusa showed that a
true quadrature of the circle is ultimately
impossible because of the * species differ-
ence” between the curved line of the cir-
cleand the straight lines of the polygons,
as discussed in Box 1. The cubature of
the sphere is certainly related to this
problem, but while the number of poly-
gons that can be inscribed in a circle is
infinite, there is a limited number of
solids that can be inscribed in the sphere
(Figurel).

LaRouche then calls for a cylinder
and cone “each able either to contain
that amount of water, or to double that
amount in the cylinder.” This requires
determining the relations among cube,

FIGURE 3

sphere, torus, cylinder, and cone
(Figure 2). Perhaps you, like some of
us, were trained in school and can spout
out the formulae for the volume of the
sphere, cylinder, and cone as a
Pavlovian response. Perhaps, you were
not able to contain yourself, even as the
problem was first posed. If this is so,
you must find an incredulous person, or
better yet, muster incredulity yourself,
and consider this paradox: We are told
that the volume of the cone is less than
one hdf the volume of the cylinder
(Figure 3). (The funisfiguring out how

much less.)
But, as the incredulous person will
Box 2 continues on next page

A cylinder (a) and the
cone that fitsinto it (b).
The cone has the same
base and height asthe
cylinder.




FIGURE 4
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If you rotate the rectangle (a) around its left edge, you will produce the cylinder (b). If you
rotate the right triangle formed by cutting the rectangle in (a) along its diagonal around
the same edge, you will produce a cone that has the same base and height as the cylinder,

asseenin (b).

point out, the cylinder can be produced
as a volume of rotation, the effect of
rotating a rectangle about an axis that
coincides with its edge. If you cut that
rectangle in half along its diagonal, you
will have aright triangle which is half
the area of the origina rectangle
(Figure 4).

Given this fact, “reason” leads to the
conclusion that the volume of the cone
will be exactly half that of the cylinder.
Of course the reason used here, is none
other than the “lazy reason” that Socrates
spurns in the Phaedo, or the doppiness
Eratosthenes ridicules in the playwright
who has a character proclam that the
tomb of aking istoo small, and therefore
the tomb should be doubled, by doubling
the length of each side. Clearly,
Eratosthenes tells us, this is a terrible
blunder, for the volume would now be
eight times greater, which the playwright
could have known, if he only took the
time to think about it.

Now consider the cone: Think of it
as a series of cylinders added up
together; this is akin to Eudoxus
method of exhaustion mentioned above
(Figure 5). The radii of the series of
diminishing cylinders changes in arith-
metic proportion relative to the number
of cylinders chosen, but the areas of
their bases, and hence their volumes,

would change as the square of that
radius (Figure 6). The cone's volume
changes in a non-arithmetic way, mak-
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FIGURE 5

The height of each cylindrical layer is 1/3
the original height of the cone. The base
of each cylindrical layer hasaradius
equal to the base of triangle produced by
that cut. Thefirst, smallest base has a
radius 1/3 the radius of the cone; the next
base has a radius 2/3 the radius of the
cone; and the final base has a radius
equal to that of the cone.

Thethreeradii in (a) correspond to the three areas shown in (b).

FIGURE 7

(@ rakalenahe ol Feighl 1 el

o

heighl

(b) melalicnshic of height 10 bass ama <

hayigihl

A graphical representation of the essential difference between the volume of a cone and
cylinder. The vertical linesin (a) represent the various radii. The vertical linesin (b) are
equal to the corresponding squares of those radii.




FIGURE 8

Here we have a cylinder, the base of
which has a radius equal to the radius of
the sphere, and the height of which is
equal to the diameter of the sphere.

ing the rel ationship between the volume
of rotation of the triangle and rectangle,
between the cone and cylinder, different
than the relationship between the areas
of the triangle and rectangle (Figure 7).
This is another difference between the
surfaces and solids, with which we
must grapple.

The relationship between the cylinder
and sphere can be adduced in a similar
way. First build a cylinder with a radius
equal to that of the sphere, and a height
equal to that of the sphere's diameter
(Figure 8). Then weigh them (note that
this works only if they were made of the
same material), and compare their
weights. Ask, why is this true? Why did
we get thisresult? This provides addition-
a insight into the problem.

But then you are reminded, as if
remembering something nearly forgot-
ten, we must now construct a sphere,
torus, cone, cylinder, and cube with the

FIGURE 11

FIGURE 9

FIGURE 10

These dlids all have the same
volume, as determined from
the volume of the sphere.
(Again, forgive the absence
of the torus.) Ask yourself,
how did we determine
these volumes? Each posed
a particular problem of
finding a cube root. Finding
the volume of the cube was

nearly impossiblel

The four solids on the left are of equal volume. The original solids are on theright. In the
original set of solids, the cylinder and cone both have a radius and height equal to the
radius of the sphere, and the side of the cube is equal to the radius of the sphere. Notice
the dramatic difference in the size of the two cubes and the two cones. The two spheres are

the same size.

same volume! Although related to the
preceding exploration, this adds a new
element to worry us (Figures 9 and
10).

Now we come to the question of
doubling these volumes, and the geo-
metric effect in this doubling. There are
three ways in which the volume of a
rectangular solid can be doubled
(Figure 11). This is dso true of the

cylinder and cone (Figure 12). In the
images shown in Figure 13, only one of
the three doubled volumes is similar to
the first.

In like manner, the sphere can only be
doubled in one way, because a sphere
must aways be smilar to any other
sphere. (Ponder the implications of this
for amoment.) The cube must be similar

Box 2 continues on next page

Our original cube, whose side is equal to the radius of our sphere, is at the
far right. Next to it is a rectangular solid whose width is double that of the
cube, while its height and depth are the same as the cube. The third solid to
the left has a face that is double the face of the original cube, but its depth is
the same as the cube. Both of these solids are double the volume of the
original cube, and their construction did not require that we find a cube
root. But the fourth solid on the left is the doubled cube. Its construction
required a profound addition to our array of capabilities.




FIGURE 12
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In both (a) and (b), the original volume is on the far right, and the perfectly doubled similar volume is on the far Ieft.

In (a), each of the three cones next to the original cone is double the volume of the original. The first to the left is doubled by doubling
the height, the second by doubling the area of the base. The cone on the far left was doubled by an equal increase to both the radius of
its base and its height, producing a similar cone. In (b), we show the same results for the cylinder. The base of the cylinder third from
theright (shown on edge) is doubled.

FIGURE 13
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Here we show each original solid with its similar companion of double capacity. Because of the difficulty posed by constructing
hollow containers, we realized that if our solids were constructed properly, we could make use of a discovery of Archimedes to
determine their volumes.

FIGURE 14
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In (a), we show the various conic sections progressing from the horizontal cut, which gives the circle on the far right; to a cut less than
parallel with the side of the cone, which resultsin an elipse; to the cut parallel with the side, which gives the parabola; to a cut
between the angle of the side and vertical, which gives the hyperbola. The final cut shown is that made down the axis of rotation,
which reveals the triangle rotated to produce the cone. In (b), we show a schematic produced by Bruce Director to demonstrate
Kepler’s conception of the conic functions. As the focus moves off to the left, the circleis transformed into an dlipse. At the boundary
with the infinite, the ellipse becomes a parabola. The hyperbola is formed on the “ other side”’ of the infinite.




to any other cube, so in thisway, itisa
spherical solid. Look back at the prob-
lem of constructing volumes of equa
capeacity.

There are ways of cheating in con-
structing a cone or cylinder whose vol-
ume is equal to that of a sphere. If you
are unconcerned that the solids you pro-
duce are similar to your original
objects, the problem is as easy as
changing the height, or the surface area
of the base, of the original. But then you
miss the fun of confronting the con-
struction of a series of different cube
roots. Even if you try to avoid this dif-
ficulty, you can not escape the problem
of finding a cube root (and a very
strange cube root at that), when con-
structing a cube with equal capacity to
the sphere.

In this experiment with volumes,
which is a heart a study of cubes, the

FIGURE 16
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problem of the curved and the straight
lurks around every corner (and around
every edge). When Kepler spoke, in his
Optics, about the relationship among the
conic functions, looking at the different
conic sections as a continuous transfor-
mation from the perfectly curved, the cir-
cle, to the perfectly straight, the straight
line, hewas, in truth, depicting the aspects
of curved and straight married in the cone
itself (Figure 14).

In this regard, the cone and cylinder
obvioudly share this important character-
istic, this union of curved and straight, as
seen in their sections (Figure 15).

But the cube, which does not appear to
have any part of curvature within it, is
itself spherica! (Figure 16)

To conclude, consider the torus, so
neglected in this initial trestment. Where
does it belong? And, how do you con-

FIGURE 15

Here we show that there are only three
different cuts of the cylinder, no matter
how you cut it! (The axial cut that
produces a rectangle is not shown.) Notice
that the cylinder and cone share the
circular and elliptical cuts (although in the
cylinder all itsdliptical cutsare of a
special type), but that the parabola and

struct those cube roots, anyway? hyperbola are unique to the cone.
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—The entire Seattle LaRouche Youth Movement was involved in this project. In addition
to Niko Paulson, Peter Martinson, and Riana . Classis, Dana Carsrud, and WHI
Mederski consistently aided the project’s progression to this stage of completion. They
hel ped construct the means of constructing the solids, and helped construct the solids,
paint them, epoxy them, and photograph them. And now, we shall all play with them!
Photographs were taken by Lora Gerlach, Wl Mederski, Dana Carsrud, and Riana S.
Classis. Lora Gerlach also provided pricel ess assistance with navigating the digital flat
lands of Photoshop and Word.




