Pedagogy

Dialogue on the Fundamentals
Of Sound Education Policy

by Lyndon H. LaRouche, Jr.

Democratic Presidential pre-candidate LaRouche, Jr. ree  opment of a true anti-Euclidean (rather than merely non-Eu-
spondsto a question on“ educationreform,” senttohiscam-  clidean) geometry.
paign website. In his later writings on the subject of the fundamental
theorem, Gauss was usually far more cautious about attacking

Sometimes, even often, perhaps, the best way to attack an the reductionist school of Euler, Lagrange, and Cauchy, until
apparently nebulous subject-matter, such as today’s animattear the end of his life, when he elected to make reference to
training of students to appear to pass standardized designs of his youthful discoveries of anti-Euclidean geometry. There-
tests, istoflank the apparentissue, in order to getto the deepdore, itisindispensable to read his later writings on the subject
underlying issues which the apparent subject-matter merely  of the fundamental theorem in light of the first. From that
symptomizes. | respond accordingly. point of view, the consistency of his underlying argument in

There is a growing number of persons, chiefly university  all cases, is clear, and also the connection which Riemann
students, who have become active in our work here, and whaites in his own habilitation dissertation is also clarified.
represent special educational needs and concerns. These con-
cerns include the insult of being subjected to virtually infor- The Central | ssue of Method
mation-packed, butknowledge-free, and very high-priceded- Now, on background. Over the past decades of arguing,
ucation. More significant, is being deprived of access to the teaching, and writing on the subject of scientific method, |
kind of knowledge to which they ought to have access as have struggled to devise the optimal pedagogy for providing
matter of right. In various sessions in which they have tackled students and others with a more concise set of cognitive exer-
me in concentrations of one to several score individuals eacltjses by means of which they might come to grips with the
many of the topics posed add up to a challenge to me: “What  central issue of method more quickly. | have included the
are you going to do to give us a real education?” There isvork of Plato and his followers in his Academy, through
nothing unjustin that demand; | welcome it. However, deliv- Eratosthenes, and moderns such as Brunelleschi, Cusa, Paci-
ering the product in a relatively short time, is a bit of a chal-oli, Leonardo, Kepler, Fermat, Huyghens, Bernoulli, and
lenge. Leibniz, among others of that same anti-reductionist current

| have supplied some extensive answers to that sort ah science. Allthat | can see in retrospect as sound pedagogy,
question, but let me reply to your question by focussing upon but not yet adequate for the needs of the broad range of spe-
what | have chosen as the cutting-edge of the package | haw@alist interest of the young people to whom | have referred.
presented. I needed something still more concise, which would establish

In the same period he was completing Bisquisitiones  the crucial working-point at issue in the most efficient way,
Arithmeticae, young Carl Gauss presented the first of his  anapproachwhich would meetthe needs of such awide range
several presentations of his discovery of the fundamental thesf students and the like. My recent decision, developed in
orem of algebra. In the first of these he detailed the factthat  concert with a team of my collaborators on this specific mat-
his discovery of the definition and deeper meaning of thder, has been to pivot an approach to a general policy for
complex domain provided a comprehensive refutation of the secondary and university undergraduate education in physical
anti-Leibniz doctrine of “imaginary numbers” which had science, onthe case of Gauss’s first presentation of his funda-
been circulated by Euler and Lagrange. Gauss, working from mental theorem.
the standpoint of the most creative of hiSt@men profes- Gattingen’s Leipzig-rooted Abraham’istner, was a uni-
sors, Katner, successfully attacked the problem of showing  versal genius, the leading defender of the work of Leibniz and
the folly of Euler’'s and Lagrange’s work, and gave us bothJ.S. Bach, and akey figure in that all-sided development of the
the modern notion of the complex domain, as well as laying German Classic typifiegneka own Lessing, Lessing’s
the basis for the integration of the contributions of both Gausgollaborator against Euler et al., Moses Mendelssohn, and
and Dirichletunder the umbrellaof Riemann’'s originaldevel-  such followers of theirs as Goethe, Schiller, and of Wolfgang
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Mozart, Beethoven, Schubert, the Humboldt brothers, and
Gerhard Scharnhorst. On account of his genius, Kastner was
defamed by the reductionist circles of Euler, Lagrange, La-
place, Cauchy, Poisson, et al., to such a degree that plainly
fraudulent libel s against him became almost an article of reli-
giousfaith among reductionists even in hislifetime, down to
modern scholars who pass on those frauds as eternal verities
to the present time. Among the crucia contributions of
Kastnertoall subsequent physical science, washisoriginating
thenotion of an explicitly anti-Euclidean conception of math-
ematicsto such followersashisstudent theyoung Carl Gauss.
Gauss s first publication of his own discovery of the funda
mental theorem of algebra, makesall of theseconnectionsand
their presently continued leading relevance for science clear.

Platonic vs. Reductionist Traditions

Thisshift in my tacticshasthefollowing crucial features.

The crucial issue of science and science education in Eu-
ropean civilization, from the time of Pythagoras and Plato,
until the present, has been the division between the Platonic
and reductionist traditions. Theformer astypified for modern
science by Cusa’ soriginal definition of modern experimental
principles, and such followers of Cusa as Pacioli, Leonardo,
Gilbert, Kepler, Fermat, et a. The reductionists, typified by
the Aristotel eans (such as Ptolemy, Copernicus, and Brahe),
the empiricists (Sarpi, Galileo, et a., through Euler and La
grange, and beyond), the*“ critical school” of neo-Aristotelean
empiricists (Kant, Hegel), the positivists, and the existential-
ists. This division is otherwise expressed as the conflict be-
tween reductionism inthe guise of the effort to derive physics
from “ivory tower” mathematics, as opposed to the methods
of (for example) Kepler, Leibniz, Gauss, and Riemann, to
derivemathematics, asatool of physical science, from experi-
mental physics.

The pedagogical challenge which the students' demands
presented to me and to such collaboratorsin thisas Dr. Jona
than Tennenbaumand Mr. Bruce Director, hasbeento express
these issues in the most concise, experimentally grounded
way. All of Gauss' sprincipal work pointsin the needed direc-
tion. The cornerstone of al Gauss' s greatest contributions to
physical scienceand mathematicsisexpressed by thescience-
historical issues embedded in Gauss' sfirst presentation of his
discovery of the fundamental theorem of algebra

All reductionist methodsin consi stent mathematical prac-
tice depend upon the assumption of the existence of certain
kinds of definitions, axioms, and postul ates, which are taught
as"“self-evident,” aclaim chiefly premised on the assumption
that they are derived from the essential nature of blind faith
in sense-certainty itself. For as far back in the history of this
matter asweknow it today, theonly coherent form of contrary
method is that associated with the term “the method of hy-
pothesis,” as that method is best typified in the most general
way by the collection of Plato’ s Socratic dialogues. The cases
of the Meno, the Theatetus, and the Timaeus, most neatly
typify those issues of method as they pertain immediately to
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matters of the rel ationship between mathematicsand physical
science. The setting forth of the principles of an experimental
scientific method based upon that method of hypothesis, was
introduced by Nicholas of Cusa, in aseries of writings begin-
ning with his De Docta Ignorantia. The modern Platonic
current in physical science and mathematics, isderived axio-
matically from the reading of Platonic method introduced by
Cusa. Thefirst successful attempt at acomprehensive mathe-
matical physics based upon these principles of a method of
physical science, isthework of Kepler.

From thebeginning, assincethedial oguesof Plato, scien-
tific method has been premised upon the demonstration that
the formalist interpretation of reality breaks down, fatally,
when the use of that interpretation is confronted by certain
empirically well-defined ontological paradoxes, as typified
by the case of the original discovery of universal gravitation
by Kepler, asreportedin his1609 The New Astronomy. The
only true solution to such paradoxes occurs in the form of
the generation of an hypothesis, an hypothesis of the quality
which overturnssome existing defi niti ons, axioms, and postu-
lates, and also introduces hypothetical new universal prin-
ciples. The validation of such hypotheses, by appropriately
exhaustive experimental methods, establishes such an hy-
pothesis as what is to be recognized as either a universa
physical principle, or the equivalent (as in the case of J.S.
Bach’sdiscovery and development of principles of composi-
tion of well-tempered counterpoint).

The Geometry of the Complex Domain

Gauss' sdevastating refutation of Euler’ sand Lagrange’s
mi sconception of “imaginary numbers,” and theintroduction
of the notion of the physical efficiency of the geometry of the
complex domain, is the foundation of all defensible concep-
tionsin modern mathematical physics. Here lies the pivot of
my proposed general use of this case of Gauss' srefutation of
Euler and Lagrange, as acornerstone of anew curriculum for
secondary and university undergraduate students.

Summarily, Gauss demonstrated not only that arithmetic
is not competently derived axiomatically from the notion of
the so-called counting numbers, but that the proof of theexis-
tence of the complex domain within the number-domain,
showed two things of crucial importance for al scientific
method thereafter. These complex variables are not merely
powers, in the sense that quadratic and cubic functions define
powers distinct from simple linearity. They represent a re-
placement for the linear notions of dimensionality, by agen-
eral notion of extended magnitudes of physical space-time,
as Riemann generalized this from, chiefly, the standpoints of
both Gauss and Dirichlet, in his habilitation dissertation.

The elementary character of that theorem of Gauss, so
situated, destroystheivory-tower axiomsof Euler et al.inan
elementary way, frominsidearithmeticitself. It also provides
a standard of reference for the use of the term “truth,” as
distinct from mere opinion, within mathematics and physical
science, and also within the domain of social relations. Those
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goals are achieved only on the condition that the student
works through Gauss's own cognitive experience, both in
making the discovery and in refuting reductionism generi-
caly. Itistheinner, cognitivesenseof “| know,” rather than*“|
have been taught to believe,” which must become the clearly
understood principle of a revived policy of a universalized
Classical humanist education.

Once a dedicated student achieves the inner cognitive
sense of “I know this,” he, or she has gained a bench-mark
against which to measure many other things.

Bringing the Invisible
To the Surface

by Bruce Director

Thisisthe second half of a pedagogical exercise onthegreat
mathematician Carl Gauss delving into the Fundamental
Theorem of Algebra—something all high school graduates
think they have learned. The first part, “ The Fundamental
Theorem: Gauss Declaration of Independence,” was pub-
lished in EIR of April 12.

When Carl Friedrich Gauss in 1798 criticized the state of
mathematicsfor its“ shallowness,” he spokeliterally; and not
only about histime, but alsoours. Then, asnow, it had become
popular for academicstoignore, and evenridicule, any effort
to search for universal physical principles, restricting the
province of scientific inquiry to the seemingly more practical
task, of describing only what’s visible on the surface. Ironi-
cally, as Gaussdemonstrated in his1799 doctoral dissertation
on the fundamental theorem of algebra, what’ son the surface
isrevealed only if one knowswhat’s underneath.

Gauss' method wasancient, madefamousinPlato’ smeta-
phor of the cave, given new potency by Johannes Kepler's
application of Nicholas of Cusa’ s method of On Learned 1g-
norance. For them, the task of the scientist was to bring into
view, the underlying physical principles that could not be
viewed directly—the unseen that guided the seen.

Takethe case of Fermat’ s discovery of the principle, that
refracted light follows the path of least time, instead of the
path of least distance followed by reflected light. The princi-
ple of least distanceisonethat lies on the surface, and can be
demonstrated in the visible domain. On the other hand, the
principleof least timeexists“behind,” soto speak, thevisible;
brought into view only in the mind. On further reflection, it
is clear, that the principle of least time was there al along,
controlling, invisibly, the principle of least distance. In
Plato’s terms of reference, the principle of least timeis of a
“higher power” than the principle of |east distance.

Fermat’ sdiscovery isauseful referencepoint for grasping
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FIGURE 1
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A succession of algebraic powersis generated by a self-similar
spiral. For equal angles of rotation, the lengths of the
corresponding radii are increased to the next power.

Gauss concept of the complex domain. As Gauss himself
stated, unequivocally, the complex domain does not mean
Euler’sformal, superficial concept of “impossible” or imagi-
nary numbers, as taught by “experts’ since. Rather, Gauss
concept of the complex domain, like Fermat’s principle of
least time, brings to the surface, aprinciple that wasthere all
along, but hidden from view.

As Gauss emphasized in his jubilee re-working of his
1799 dissertation, the concept of the complex domain is a
“higher domain,” independent of all a priori concepts of
space. Y et, itisadomain, “inwhich one cannot movewithout
the use of language borrowed from spatial images.”

TheAlgebraic and the Transcendental

Theissue for him, asfor Gottfried Leibniz, wasto find a
general principlethat characterized what had become known
as"algebraic” magnitudes. These magnitudes, associated ini-
tially with the extension of lines, squares, and cubes, all fell
under Plato’ s concept of dunamais, or powers.

Leibniz had shown, that while the domain of all “age-
braic” magnitudesconsi sted of asuccession of higher powers,
thisentirealgebraic domainwasitself dominated by adomain
of astill higher power, which Leibniz called “transcendental .”
The relationship of the lower domain of algebraic magni-
tudes, to the higher non-algebraic domain of transcendental
maghnitudes, is reflected in what Jakob Bernoulli discovered
about the equi-angular spiral (see Figure 1).

Leibniz, with Jakob’s brother Johann Bernoulli, subse-
guently demonstrated that thishigher, transcendental domain
does not exist as a purely geometric principle, but originates
fromthe physical action of ahanging chain, whose geometric
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FIGURE 2
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LeibniZ construction of the algebraic powers fromthe hanging
chain, or catenary curve.

shape Christiaan Huygens called a catenary (see Figure 2).
Thus, thephysical universeitself demonstratesthat the*alge-
braic” magnitudes associated with extension, are not gener-
ated by extension. Rather, the algebraic magnitudes are gen-
erated from a physical principle that exists beyond simple
extension, in the higher, transcendental, domain.

Gauss, in his proofs of the fundamental theorem of alge-
bra, showed that even though this transcendental physical
principlewasoutsidethedomain of thevisible, it nevertheless
cast ashadow that could be madevisibleinwhat Gausscalled
the complex domain.

As indicated in part one of this article, the discovery of
a genera principle for algebraic magnitudes was found, by
looking through the“hole” represented by the square roots of
negative numbers. These square roots appeared as solutions
to algebraic equations, but lacked any apparent physical
meaning. For exampl e, inthe algebraic equation x=4, x signi-
fiesthe side of asquarewhoseareais4; while, inthe equation
x2=—4, the x signifiesthe side of asquare whose areais—4, an
apparent impossibility.

For the first case, it is simple to see, that a line whose
length is 2 would be the side of the square whose area is 4.
However, from the standpoint of theal gebrai c equation, aline
whose length is -2, also produces the desired square. At first
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magnitudes are distinguished from one ancther only by their
direction, so oneisdenoted as 2 and the other as -2.

Now, extend thisinvestigationtothecube. Inthealgebraic
equation x*=8, there appearsto be only one number, 2, which
sati sfies the equation, and this number signifies the length of
the edge of a cube whose volumeis 8. This appearsto bethe
only solution to this equation since (-2)(-2)(-2)=—8. The
anomaly that there are two solutions, which appeared for the
case of a quadratic equation, seems to disappear, in the case
of the cube, for which there appears to be only one solution.

Trisectingan Angle

Not so fast. Look at another geometrical problem which,
when stated in algebraic terms, poses the same paradox: the
trisection of an arbitrary angle. Likethe doubling of the cube,
Greek geometers could not find ameansfor equally trisecting
an arbitrary angle, from the principle of circular action itself.
The several methods discovered (by Archimedes, Eratos-
thenes, and others), to find ageneral principle of trisecting an
angle, were similar to those found, by Plato’s collaborators,
for doubling the cube. That is, this magnitude could not be
constructed using only a circle and a straight line, but it re-
quired the use of extended circular action, such as conical
action. But, trisecting an arbitrary angle presentsanother type
of paradox which isnot so evident in the problem of doubling
the cube. To illustrate this, make the following experiment:

Draw acircle (Figure 3). For ease of illustration, mark
off an angle of 60°. It is clear that an angle of 20° will trisect
this angle equally. Now add one circular rotation to the 60°
angle, making an angle of 420°. It appears these two angles
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FIGURE 4

The unit of actionin
Gauss complex
domain.

are essentially the same. But, when 420° is divided by 3, we
get an angle of 140°. Add another 360° rotation and we get to
theangle of 780°, which appearsto be exactly the same asthe
angles of 60° and 420°. Y et, when we divide 780° by 3 we
get 260°. Keep thisup, and you will seethat the same pattern
isrepeated over and over again.

Looked at as a “sense certainty,” the 60° angle can be
trisected by only one angle, the 20° angle. Y et, when looked
at beyond sense certainty, there are clearly three angles that
“solve’ the problem.

Thisillustratesanother “hole” in the algebraic determina-
tion of magnitude. In the case of quadratic equations, there
seemto be two solutionsto each problem. In some cases, such
as x*=4, those solutions seem to have a visible existence;
whilefor the case, x*=-4, there are two solutions, 2 /-1 and
—-2~/-1, both of which seem to be “imaginary,” having no
physical meaning. In the case of cubic equations, sometimes
there arethree visible solutions, such asin the case of trisect-
ing an angle. But in the case of doubling the cube, there ap-

pears to be only one visible solution, but two “imaginary”
solutions: =1-(v/3)(+/-1); and -1 + (1/3)(/-1).

Biquadratic equations, such asx*=16, that seemtohaveno
visiblemeaning themsel ves, havefour solutions, two“real” (2
and —2) and two “imaginary” (2 /-1 and —2,/-1).

Things get even more confused for agebraic magnitudes
of still higher powers. This anomaly poses the question that
Gaussresolvedin hisproof of what he called the fundamental
theorem of algebra: How many solutions are there for any
algebraic equation?

The “shallow”-minded mathematicians of Gauss day,
suchasEuler, Lagrange, and D’ Alembert, took the superficial
approach of asserting that any algebraic equation has as many
solutions as it has powers, even if those solutions were “im-
possible,” such asthe squareroots of negative numbers. (This
sophist’sargument is analogousto saying, “ Thereisadiffer-
ence between man and beast; but, this difference is mean-
ingless.”)

Shadows of Shadows: The Complex Domain

Gauss polemically exposed this fraud for the sophistry it
was. “If someone would say a rectilinear equilateral right
triangleisimpossible, therewill be nobody to deny that. But,
if he intended to consider such an impossible triangle as a
new species of triangles and to apply to it other qualities of
triangles, would anyone refrain from laughing? That would
be playing with words, or rather, misusing them.”

For, Gauss, no magnitude could be admitted, unless its
principle of generation was demonstrated. For magnitudes
associated with the square roots of negative numbers, that
principle was the complex physica action of rotation, com-
bined with extension. Gauss called the magnitudes generated
by this complex action, “complex numbers.” Each complex
number denoted a quantity of combined rotational, and ex-
tended action.

The unit of action in Gauss' complex domainisacircle,
which is one rotation, with an extension of one (unit length).

FIGURE 5
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(b)

In (a) the lengths of the
radii are squared asthe
angle of rotation
doubles. In (b) the
lengths of the radii are
NEE cubed as the angle of
rotation triples.
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FIGURE 6
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Sguaring a complex number.

In thisdomain, the number 1 signifies one complete rotation;
-1, half arotation; 1/—1, one-fourth of arotation; and —/-1,
three-fourths of arotation (Figure 4).

These “shadows of shadows,” as he called them, were
only avisible reflection of a still higher type of action, that
wasindependent of all visibleconcepts of space. Thesehigher
forms of action, although invisible, could nevertheless be
brought into view as a projection onto a surface.

Gauss' approach is consistent with that employed by the
circles of Plato’s Academy, as indicated by their use of the
term epiphanea to indicate asurface (it comes from the same
root as the word, “ epiphany”). The concept indicated by the
word epiphanea is, “that on which something is brought
into view.”

From this standpoint, Gauss demonstrated, in his 1799
dissertation, that the fundamental principle of generation of
any algebraic equation, of no matter what power, could be
brought into view, “epiphanied,” so to speak, asasurfacein
the complex domain. These surfaceswere visible representa-
tions, not—as in the cases of lines, squares, and cubes—of
what the powers produced, but of the principlethat produced
the powers.

To construct these surfaces, Gauss went outside the sim-
ple visible representation of powers—such as sguares and
cubes—hy seeking amore general form of powers, as exhib-
itedintheequi-angular spiral (Figureb). Here, thegeneration
of apower, correspondsto theextension produced by an angu-
lar change. The generation of square powers, for example,
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FIGURE 7

Cubing a complex number.

FIGURE 8

The sine of angle x istheline zZP and the cosine of xisOP. The sine
of 2xistheline QP' and the cosineis OP'.
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correspondsto the extension that results
from adoubling of theangle of rotation,
within the spiral (5a); and the genera-
tion of cubed powers correspondsto the
extension that results from tripling the
angleof rotation, withinthat spiral (5b).
Thus, it isthe principle of squaring that
produces square magnitudes, and the
principle of cubing that produces
cubics.

FIGURE 9

@ (b)

In Figure 6, the complex humber z
is“squared” when the angle of rotation
is doubled from x to 2x and the length
squared from A to A2. In doing this, the
smaller circle maps twice onto the
larger, “squared” circle. InFigure7,the
sameprincipleisillustrated with respect
to cubing. Here the angle x is tripled to
3%, and the length A is cubed to A% In
this case, the smaller circle maps three
times onto the larger, “cubed” circle.
And so on for the higher powers. The
fourth power maps the smaller circle
four times onto the larger. The fifth

(b)

power, fivetimes, and so forth.

This gives a general principle that
determines all algebraic powers. From
this standpoint, al powers are reflected
by the same action. The only thing that
changeswith each power, isthe number
of times that action occurs. Thus, each

power is distinguished from the others,
not by a particular magnitude, but by a
topological characteristic.

In his doctoral dissertation, Gauss
used this principle to generate surfaces that expressed the
essential characteristic of powersin an even more fundamen-
tal way. Each rotation and extension produced acharacteristic
right triangle. The vertical leg of that triangleis the sine and
the horizontal leg of that triangle is the cosine (Figure 8).
There is a cyclical relationship between the sine and cosine
which is a function of the angle of rotation. When the angle
is0, thesineis 0 and the cosineis 1. When the angle is 90°,
thesineis 1 and the cosineis 0. Looking at this relationship
for an entirerotation, the sinegoesfrom0to 1to0to-1t0 0;
while the cosine goes from 1 to 0 to —1 to 0 and back to 1
(Figure9).

InFigure9, aszmovesfrom 0to 90°, thesine of theangle
variesfrom 0to 1; but at the same time, the angle for Z goes
from 0 to 180°, and the sine of Z2 varies from 0 to 1 and back
to 0. Then, as zmoves from 90° to 180°, the sine varies from
1 back to 0, but the angle for z2 has moved from 180° to 360°,
and its sine has varied from 0 to -1 to 0. Thus, in one half
rotation for z, the sine of Z2 has varied from 0 to 1 to O to
—-1t0 0. In his doctoral dissertation, Gauss represented this
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Variations of the sine and cosine from the squaring of a complex number.

complex of actions as a surface (Figures 10, 11, 12). Each
point on the surfaceis determined so that its height abovethe
flat plane, is equal to the distance from the center, times the
sine of the angle of rotation, asthat angle isincreased by the
effect of the power. The power of any point in the flat plane,
is represented by the height of the surface above that point.
Thus, as the numbers on the flat surface move outward from
the center, the surface grows higher according to the power.
At the sametime, asthe numbersrotate around the center, the
sine will pass from positive to negative. Since the numbers
on the surface arethe powers of the numberson theflat plane,
the number of times the sine will change from positive to
negative, depends on how much the power multiplies the
angle (double for square powers, triple for cubics, etc.).
Therefore, each surface will have as many “humps’ as the
equation has dimensions. Consequently, aquadratic equation
will have two “humps’ up and two “humps’ down (Figure
10). A cubic equation will have three “humps’ up and three
“humps’ down. (Figure 11). A fourth-degree equation will
have four “humps” in each direction (Figure 12); and so on.
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Gauss specified the construction of two surfacesfor each
algebraic equation, one based onthevariationsof thesineand
the other based on the variations of the cosine (Figure 13).
Each of these surfaces will define definite curves where the
surfaces intersect the flat plane. The number of curves will
depend on the number of “humps,” which in turn depend on

thehighest power. Since each of these surfaceswill berotated
90° to each other, these curves will intersect each other, and
the number of intersectionswill correspond to the number of
powers (Figure 14). If theflat planeis considered to be zero,
theseintersectionswill correspond to the solutions, or “roots’
of the equation. This proves that an algebraic equation has
asmany roots as its highest power.
Step back and look at this work.

FIGURE 10

FIGURE 11

FIGURE 12

These surfaces were produced, not
from visible squares or cubes, but
from the general principle of squar-
ing, cubing, and higher powers. They
represent, metaphorically, a princi-
ple that manifests itself physically,
but cannot be seen. By projectingthis
principle—the general form of
Plato’ spowers—onto thesecomplex
surfaces, Gauss has brought the in-
visibleinto view, and madeintelligi-
ble what is incomprehensible in the
superficial world of algebraic for-
malism.

The effort to make intelligible
the implications of the complex do-
main was afocusfor Gaussthrough-
out hislife. Writingtohisfriend Han-
sen on Dec. 11, 1825, Gauss said:
“These investigations lead deeply

A Gaussian surface for the
third power.

A Gaussian surface for the
second power.

FIGURE 13
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(a) combines the surfaces based on the variations of the sineand
cosine for the second power. (b) combines the surfaces based on
the variations of the sine and cosine for the third power.
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A Gaussian surface for the
fourth power.

into many others, | would even say,
into the M etaphysics of thetheory of
space, and it is only with great diffi-
culty can| tear myself away fromthe
resultsthat spring fromit, as, for example, the true metaphys-
ics of negative and complex numbers. The true sense of the
sguare root of —1 stands before my mind fully alive, but it
becomes very difficult to put it in words; | am aways only
ableto give avagueimagethat floatsin the air.”
It was here, that Bernhard Riemann began.

FIGURE 14

(a) istheintersection of the surfacesin 13(a) with theflat plane.
(b) isthe intersection of the surfacesin 13(b) with the flat plane.
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